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Abstract—A novel method for onset detection in single-channel
audio recordings is presented and evaluated. Here, source sepa-
ration techniques are used as a preprocessing stage for extracting
the harmonic content of musical notes. The residual channel is
then used to estimate an onset detection function whose peaks
align with note transitions. Several tests are conducted on a
selected dataset in order to evaluate its performance and compare
with alternative algorithms. The results provide evidence that the
proposed residual-based method can achieve comparable levels
of accuracy without the need of previous training stages.

Index Terms—onset detection, source separation, spectral fil-
tering, multipitch estimation, music information retrieval.

I. INTRODUCTION

Within the field of Music Information Retrieval (MIR), the
detection of onsets in music has a significant importance in
obtaining further high-level features, such as beat or rhythm,
and it is also essential in Automatic Music Transcription
(AMT) [1].

Onset detection refers to the task of finding the time instant
at which any particular note event starts. However, there are
several factors that can make this a difficult task, for example
the number of sources playing simultaneously, their relative
volumes, and how close they are in time.

Algorithms designed to automatically detect onsets in musi-
cal recordings usually require the estimation of an Onset De-
tection Function (ODF), which is derived from the input data
and whose peaks normally correspond to particular changes
in the signal. Obtaining the ODF usually implies breaking the
audio signal into a set of consecutive overlapping frames, and
then the evolution of some particular feature within the new
representation is observed across time [2]–[5].

More recent approaches have incorporated techniques from
machine learning and support vector machines. In this case,
the input data is also a time-frequency representation of the
signal, and neural networks are commonly used to obtain the
final position of the onsets [6].

In this study, source separation techniques based on pitch
tracking and spectral filtering, are applied to extract the
harmonic content of notes in order to obtain a residual channel,
in which the position of transients should be clearer.
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The remainder of this paper is structured as follows. In
Section 2 a review of previous onset detectors is presented,
focussing on the method used to obtain the ODF. Section
3 describes the harmonic-content separation process and the
residual channel generation. The proposed onset detection
algorithm is presented in Section 4 and its evaluation is
presented in Section 5. Finally, Section 6 concludes the paper
and gives some ideas for further work.

II. ONSET DETECTION ALGORITHMS

According to Shao et. al. [1] probably the most difficult
challenge for an onset detector is to obtain an ODF based on
a chosen type of transformation followed by feature extraction.
This function has to detect relevant changes in the audio
signal whilst remaining robust enough to reject any possible
interference created by intrinsic playing styles, e.g. vibrato,
glissandi and ornamentation, or any form of impulsive noise.

Classical onset detection strategies are usually classified
either as energy-based or phase-based algorithms. In the first
case, onsets are detected by looking at sudden changes in
the energy of the signal, whilst methods in the second group
assume that any change in instantaneous frequency could be
an indicator of a possible onset. Although these two initial
approaches proved to be useful, energy-based detectors cannot
distinguish between increases and decreases in amplitude of
the signal, while phase-based systems are susceptible to noise
introduced by components with no significant energy [3].

A major improvement to onset detection was proposed
by André Holzapfel et. al. in 2010 [5]. In this study, three
separated ODF’s were estimated according to the phase slope,
spectral flux, and fundamental frequency contours, estimated
by using the YIN algorithm. Detections coming from these
three functions were added and smoothed to generate a
strength signal from which the final location of the onsets
were selected by peak-picking. Tests were conducted using a
specific dataset of pitched instruments, considering evaluation
aspects defined by the Music Information Retrieval Evaluation
Exchange (MIREX). The authors reported good levels of
accuracy for isolated instruments, while lower levels were
observed for complex mixtures.

More recently, the use of sparse decomposition techniques
has been explored in onset detection systems. Shao et. al. [1]



sparsely decomposed the input signal using Matching Pursuit
(MP) and the resulting time-frequency representation was used
as the input for an hybrid detection algorithm combining the
Degree of Explanation (DE) and the Change of Partials (CP).
The combined results showed improved detection accuracy on
a dataset comprising 2050 onsets.

Stasiak and Mońko proposed an algorithm for onset detec-
tion based on Convolutional Neural Networks (CNN) [6]. In
this case, the network was fed with spectrogram fragments in
the form of images with 15 columns and 80 rows. The output
of the network was treated as a classical ODF and a fixed
threshold was used to detect peaks. The dataset for testing
was similar to the one used in [5] and a subset was utilized
for training purposes.

The influence of noise in onset detection was recently
studied by Maka in [7]. His research aimed to evaluate the
performance of five well-established algorithm under noisy
conditions. Four types of background noises were selected for
the tests, namely cars, shop noises, rain and wind sounds, and
the interference created by the rain was found to be the most
significant factor in terms of reducing the final accuracy during
onset detection.

III. SEPARATION OF HARMONIC CONTENT FROM
MUSICAL NOTES

The previous section mentioned important advances that
have been proposed in onset detection. This initial study aims
to enhance the visibility of onsets by first identifying and ex-
tracting some of the masking harmonic content that is present
in the input signal. In this section we present the separation
algorithm that is used to extract the harmonic content from
musical notes, which constitutes the preprocessing stage of
the proposed system.

A. Time-Frequency Representation

The standard Short-Time Fourier Transform (STFT) was
selected as a basis to represent signals. Although other time-
frequency representations have been studied as well, for
example the Correlogram in [6] and the Gammatone Filter
Bank in [7], results show that the classic spectrogram still
represents the best choice, due to the low number of artifacts
that it generates. To obtain a good time resolution, which is
an essential aspect in onset detection, a frame size of 2048
samples is considered, with 75% overlap. A Hanning window
function has been selected to smooth out edge effects in each
frame.

B. Estimation of the Pitch Trajectory

Profiling the pitch trajectory of a harmonic sound is nec-
essary to identify the location of its partials. Depending on
how many sources are present, and the degree of overlap
between them, the task of estimating a reliable trajectory for
each of them is highly challenging on its own. Some common
problems in pitch estimation include octave errors, misleading
detection of silence gaps, and incomplete note tracking.
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Fig. 1. Spectral mask used to extract the harmonic content from a set of
notes played by a saxophone.

In this study, a modified version of the multipitch estimation
algorithm, developed by Duan et. al. [8], is used to obtain a
framewise fundamental frequency estimate for the dominant
harmonic source present in the input signal. The method
was selected considering its overall good performance and
flexibility. An implementation of the algorithm is available
on the author’s website [9].

C. Spectral Filter and Residual Channel

The idea of designing spectral filters to separate harmonic
content from audio recordings was proposed by Every and
Szymanski in [10], and further explored by Siamantas in [11].
Pitch information is used to design an extraction mask for a set
of harmonic partials associated to one particular source. The
method incorporates some degree of flexibility to allow small
deviations between the real and ideal position of harmonic
partials.

The mask can be then constructed by setting to one those
time-frequency tiles of the mask that correspond to the fre-
quency bins where the harmonic partials are located, while
setting the rest of the values to zero. Figure 1 shows a spectral
mask used to extract the harmonic content from a set of
saxophone notes.

If MH(t, f) denotes the spectral mask in the time-frequency
plane for the harmonic content, the mask to obtain the residual
can be obtained by means of the following relation.

MR(t, f) = 1−MH(t, f) (1)

The residual signal is generated by multiplication between
the original magnitude spectrogram and the residual mask,
followed by inverse transformation in which the phase in-
formation of the original signal is used to complete the
reconstruction.



IV. RESIDUAL-BASED ONSET DETECTOR

Very little work has looked at the residual signal resulting
from a separation process as a means of obtaining useful
information [11]. In general, after the harmonic content of
every source has been extracted, the residual channel can be
expressed in the following way.

xres(t) = x(t)−
J∑
j=1

ŝj(t) (2)

Where x(t) is the original time domain signal, ŝj(t) is the
estimated j-th harmonic source, and J is the total number
of harmonic sources present. The following cases can be
distinguished regarding the content of xres(t), mentioned in
order of importance for the present approach.

• Harmonic content as a result of misleading pitch estima-
tion.

• Non-harmonic content of a fast and impulsive nature,
for example onset transients of harmonic notes and non-
pitched percussive sources.

• Non-harmonic content of a structured broadband-noise
nature, for example breathiness in wind instruments.

If harmonicity or near-harmonicity is used as the primary
part of a source model and the input signal consists of
discrete musical note events, the signal content that ends up
in the residual channel can provide access to valuable timing
information. The following subsections describe the proposed
method.

A. Onset Detection Function

The residual channel obtained after extracting the harmonic
content from a set of saxophone notes is presented along with
the original signal in Figure 2. In this graph it is evident that
the residual presents low energy levels during silence gaps or
during the sustain of each note, whilst short bursts of energy
appear during note transitions. Two excessively long offsets
can also be observed in the residual, starting at t = 4.5s and
t = 11.8s. They are due to errors in the pitch trajectory since
Duan’s algorithm was unable to follow the whole duration of
these notes.

As these energy bursts align with note transitions, the
residual channel seems to be a reasonably good basis for an
ODF. In order to obtain a stable detection function though,
some specific transformations have to be carried out. The
first step is to half-wave rectify the residual signal before
computing its upper root-mean-squared envelope curve using
a window size of 1000 samples.

The resulting envelope curve is then downsampled by a
factor of 140 and the mode of the resulting curve is then
subtracted. Finally, the envelope curve is smoothed by means
of a moving average filter of length 6. The result is an ODF
that emphasizes the peaks at the transitions between musical
notes. Figure 3 summarizes the way in which the ODF is
obtained from the residual channel.

0 2 4 6 8 10 12

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

pl
itu

de

Original Signal
Residual

Fig. 2. Residual channel (black) presented on top of the original signal (grey).

B. Threshold and Peak-Picking

Given the Onset Detection Function ODF(n), the next step
is to identify all peaks with a prominence higher than a
specified threshold. There are two different approaches to
define the threshold, according to Bello et. al. [2]: fixed and
adaptive. The proposed algorithm uses a combination of both.
The reference threshold, denoted by T , is defined as follows.

T = E[ODF(n)] (3)

Instead of using the value of T as a minimum peak
height (fixed threshold), the value is used as minimum peak
prominence. That is, each detected peak must have a vertical
drop of more than T units from the peak on both sides,
without encountering either the end of the function or a larger
intervening peak. This feature gives some level of adaptability
to the threshold and helps to detect real low-magnitude peaks
without picking a significant number of noisy ones.
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Fig. 3. Generation of the Onset Detection Function (ODF) from the residual
channel xres(t).



C. Peak Pairs

Considering that the energy within the residual channel is
mostly related with offsets and onsets, the occurrence of peak-
pairs is common. They are pairs of detected peaks correspond-
ing to the same note transition, the first one corresponding to
an offset and the second one to an onset.

To detect peak pairs, the minimum distance SM has to be
calculated based on the distance between all detected peaks
in ODF (n). Denoting the set of distances between adjacent
peaks as Psep, then the value of SM is estimated by the
following relation.

SM =
median(Psep)

2
(4)

Two consecutive peaks in ODF (n), whose distance is
equal or smaller than SM , are considered as a peak pair and
therefore, treated as a single onset.

D. Onset Selection

Due to the nature of the proposed ODF, peaks tend to
appear later than the proper onsets. Hence, their actual position
has to be estimated in accordance with the location of its
corresponding peak.

Considering the i-th detected peak, centred at sample mi,
then the onset position, denoted OPi

, is found within the
interval of samples [mi − δ,mi], according to the following
equation.

OPi
= argmin
p∈[mi−δ,mi]

ODF(p) (5)

Where the value of δ has been empirically selected as 15
samples for single detected peaks and 30 for peak pairs.

Spurious peaks related with long offsets can also be rejected
by taking advantage of their slower decay and asymmetry.
The asymmetry can be estimated by observing the number of
samples between the peak position and the position at which
the function crosses the threshold T . If this value is greater
than the distance between the peak and its onset position, the
peak and its onset position are rejected. Figure 4 presents the
estimated onset positions for the notes played by a saxophone.

V. EVALUATION

In this section the proposed onset detection algorithm is
evaluated with regards to its performance on several audio
signals. The selected test recordings and the metrics used for
evaluation purposes are described in the following subsections.

A. Dataset

Evaluation of performance was conducted using a set of
twenty three monophonic audio excerpts, sampled at 44.1 kHz,
taken from the same database used by Holzapfel et. al. in [5].
It contains wind and string musical instruments like violin,
piano, guitar, clarinet and trumpet. A total number of 726
real onsets are present, with annotations provided by André
Holzapfel, which were further revised by Sebastian Böck.
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Fig. 4. Final onset positions for a set of notes played by a saxophone. The
final set of accepted peaks are marked with asterisks whilst diamonds indicate
onset positions.

B. Methodology

The performance of the algorithm was evaluated using the
selected dataset and annotations to compute the F-Measures,
in the same way as it was used in the MIREX onset detection
evaluation. A tolerance window of ±50ms was considered, and
penalties related to double detections and merged onsets were
also incorporated. Two well-known onset detection systems
and one state-of-the-art algorithm were selected for compari-
son and applied to the same input signals. These systems are
briefly described below.
• AUBIO: Well-known open-source algorithm designed by

Paul Brossier [12].
• QMARY: Well-known complex domain-based method

developed at Queen Mary College [4].
• CNN: State-of-the-art onset detector based on a trained

CNN developed by Stasiak and Mońko [6].

C. Results and Discussion

Table I shows the results obtained by the proposed method
and the alternative systems when applied to the selected
dataset. In each case, the F-measure is given as a percentage.

TABLE I
F-Measures obtained using the proposed algorithm and alternative onset

detectors.

Algorithm Type of Instrument AverageString Wind
PROPOSED 54.7% 61.6% 58.6%

AUBIO 55.4% 63.5% 60.0%
QMARY 67.9% 70.6% 69.5%

CNN 86.1% 88.6% 87.5%

The first point to note it that the state-of-the-art algorithm is
the one with the highest accuracy in onset detection. This result
is not surprising since the CNN algorithm creates learned
models of the input signals during a previous training stage,



which can also be significantly hard and requires many audio
examples. The proposed method, on the other hand, runs
without any previous knowledge of the input recordings and
surprisingly, its performance is similar to that exhibited by
alternative onset detection methods which do not incorporate
learning features either.

It was also observed that Queen Mary’s onset detector was
the one generating the highest number of false positives. If the
number of detections is high, the probability of detecting many
real onsets increases, which leads to a higher performance
in terms of the F-Measure. The reason for this lies in the
actual definition of the F-Measure, which penalises more
false negatives compared with false positives. Considering the
proposed algorithm and the nature of its ODF, the number of
detections happened to be lower or equal to the number of
real onsets, for most of the audio excerpts, which influenced
the final F-Measure value negatively.

Finding a proper onset time for each selected peak in the
ODF proved to be a difficult task with significant impact on
the overall performance of the system. Several cases were
observed in which the local minimum, before a real onset peak,
occurred outside the window of 50 ms defined by MIREX and
therefore, each of these detections were counted as one false
positive and one false negative.

It is also worth mentioning that the quality of the residual
channel, on which the proposed ODF is based, depends on the
accuracy of the separation of the harmonic content, and hence,
on the quality of the estimated pitch trajectory. Although the
pitch tracking stage used here showed good results in detecting
the fundamental frequency in most of the notes, it also failed
in following their complete duration, which created significant
peaks at the offsets. In those cases where an offset was far
apart from the following onset, the symmetry of the peak was
used to differentiate the onset peak from the offset one, but
this assumption was not sufficient to handle all possible cases.
Therefore, extracting high quality pitch information from the
input signal is an important aspect that will be explored in
future research.

Finally, considering the type of instrument, it can be ob-
served that all considered onset detection methods showed
slightly higher accuracy for wind instruments than for string
ones. However, the average difference on F-Measure is less
than 5%, which is too small to conclude that the type of
instrument influenced the accuracy of the onset detector.
Considering that the score was different in every audio excerpt,
these differences in accuracy can also be attributed to each
particular performer, who chose a different playing style and
tempo in each case.

VI. CONCLUSIONS AND FURTHER WORK

In this paper a novel residual-based onset detection system
was introduced, in which the separation of harmonic con-
tent from musical notes is used as a preprocessing stage.
The proposed ODF and onset selection strategy exhibit a
comparable performance, in the sense of F-measure, when

applied to a dataset comprising several pitched instruments.
No information is required a priori for the system operation.

The energy left in the residual channel, after spectral
filtering, was shown to constitute an interesting basis for an
onset detector. Since the spectral filter is directly guided by
an automatic pitch detector, no signal dependent parameters
or previous training stages are required.

In future work, the possibility of improving the automatic
pitch estimation process will be explored, in order to generate
more accurate pitch trajectories. These improvements will
significantly help in achieving higher quality residuals and
detection functions.

The ODF interpretation can also be refined to obtain a
sharper selection of real peaks, decreasing the number of
missed onsets. Finally, a more sophisticated strategy can also
be introduce to locate more precisely the onset times, once
their corresponding peaks have been identified.
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